

Describing Matter

Physical Properties

- Qualitative state, colour, malleability
- Quantitative conductivity, viscosity, density

Pure Substances

- Element a pure substance that cannot be broken down or separated into simpler substances (e.g., gold)
- Compound a pure substance composed of at least two elements (e.g., water)

Take the Section 1.2 Quiz

See pages 22 - 23

- An atom is the smallest particle of an element that retains the properties of the element.
- All atoms are made up of three kinds of particles called subatomic particles. These particles are:

Table 1.2 Subatomic Particles						
Name	Symbol	Relative Mass	Electric Charge	Location in the Atom		
Proton	р	1836	+	Nucleus		
Neutron	n	1837	0	Nucleus		
Electron	е	1	-	Surrounding the nucleus		

Take the Section 1.3 Quiz

See pages 32 - 33

▶ Why are elements studied in chemistry?

- Chemistry is the study of matter and its changes.
- Elements make up an incredible variety of different substances.
- An element is a pure substance that cannot be broken down or separated into simpler substances. Each element is one kind of atom.
- By studying elements, we can learn more about the structure of matter.

Chemical Symbols

Element names and symbols

- Because elements have different names in different languages, chemists use international symbols for them
- Chemical symbols consist of one or two letters.
- Ancient names are used as the source of many of the symbols. Example:
- Mercury Hg Hydragyrum (Latin for liquid silver)

Chemical Symbols

All elements are represented by symbols.

Here are just a few element symbol examples:

Gases at room temperature				
hydrogen	Н	<i>Hydro genes</i> = water forming		
helium	He	<i>Helios</i> = sun		
Liquids at room temperature				
bromine	Br	Bromos = smelly		
mercury	Hg	<i>Hydrargyrum</i> = Latin for liquid silver		
Solids at room temperature				
lithium	Li	Lithos = stone		
sodium	Na	<i>Natrium</i> = Latin for sodium		

(c) McGlaw rmr Ryerson 2007

Common Elements

Hydrogen

- Colourless, odourless, tasteless, and high flammable gas.
- Makes up over 90 percent of the atoms in the universe
- Used in producing fertilizers
- Lighter than air
- Can be separated from water or gasoline and be used as a source of fuel

See page 45

Common Elements

 Good structural material, but can rust when mixed with water or oxygen

Iron in a river turns water and rocks red

- Oxygen (**O**) gaseous element we breathe
 - 21 % of the atmosphere
 - Reacts with most other elements

Oxygen and iron react in burning thermite <u>GNU license photo</u>

(c) McGraw Hill Ryerson 2007

See page 45

BC SCIENCE

Other Common Elements

- Sodium (Na) soft metal that reacts with water
- Chlorine (CI) yellow-green gas that is highly toxic
- Mercury (Hg) liquid at room temperature metal.
- Silver (Ag) precious metal mined in British Columbia
- Silicon (Si) brittle, grey, semiconductor that is second most common element in Earth's crust.

Take the Section 2.1 Quiz

2.2 Periodic Table

- Origin of the periodic table
 - Chemists in the 10th century wished to organize elements
 - Attempts focused on grouping elements with similar properties
 - In 1867, Dimitri Mendeleev found patterns in the elements and organized them into table
 - The resulting table had holes for elements not yet discovered

► The Periodic Table provides information

on the physical and chemical properties of elements

Atomic Mass - mass of average atom Atomic Number - number of protons Ion Charge - electric charge that forms when an atom gains or loses electrons

See page 53

-				_	-
	Medaw-Hill	Ryerson			
	DO		MG	1-1	

	1																	18
1	1 + H Hydrogen 1.0	2			meta		Atomic Nu	imber —	• 22 4·		charge(s)		13	14	15	16	17	2 0 He Helun
2	3 + Li Libium 6,9	4 2+ Be Benjilium 9.0			meta ll oi non-met	d	Symbol Name Atomic Ma	ass —	Ti 31 Tuniun 47.9				5 B Baren 10,8	6 C Carbin 12,0	7 3	8 2- O Okygen 16,0	9 – F Fluerine 19,0	10 0 Ne Nen 20,2
3	11 + Na sedum 23.0	12 2+ Mg Vageasium 24,3	3	4	5	6	7	8	9	10	11	12	13 3+ Al Aluminum 27_0	14 Si Silcer 28.1	15 3- P Phosphorus 31.0	16 2- S Sulphur 32.1	17 - Cl Chleine 35.5	18 0 Ar Argen 39,9
4	19 + K Potassium 39.1	20 2+ Ca Calitium 40.1	21 3+ Sc Standium 45.0	22 4+ Ti ³⁺ ^{Titaniun} 47.9	23 5+ V 4+ Vanadium 50.9	24 3+ Cr 2+ Chronium 52.0	25 2+ Mn 3+ Margurese 54.9	26 3+ Fe ²⁺ Im 55.8	27 2+ Co ³⁺ Cobat 58.9	28 2+ Ni ³⁺ Nidol 58.7	29 2+ Cu ¹⁺ 63.5	30 2+ Zn 2h0 65.4	31 3+ Ga Galun 69.7	32 4+ Ge Gemanium 72.6	33 3- As Assenic 74.9	34 2 See Selenium 79.0	35 – Br Bronine 79.9	36 0 Kr Krypten 83.8
5	37 + Rb Rubidum 85.5	38 2+ Sr Stonlun 87.6	39 3+ Y Yhiun 88.9	40 4+ Zr Zirosnium 91_2	41 3+ Nb ⁵⁺ Noblum 92,9	42 2+ Mo ³⁺ Nohtdenum 95.9	43 7+ Tc Technetum (98)	44 3+ Ru ⁴⁺ Ruterium 101.1	45 3+ Rh 4+ Rhodum 102.9	46 2+ Pd 4+ Patedum 106.4	47 1+ Ag Silver 107.9	48 2+ Cd Gadmiun 112_4	49 3+ In Inter 114,8	50 4+ Sn ²⁺ Th 118.7	51 3+ Sb 5+ Antimony 121.8	52 2 Te Teturium 127.6	53 - Indina 126,9	54 0 Xe Xerxe 131.3
6	55 + Cs Cestun 132.9	56 2+ Ba Barium 137.3	57 3+ La Lanhanum 138.9	72 4+ Hf Hathiam 178,5	73 5+ Ta Tartalum 180.9	74 6+ W Turgaten 183 . 8	75 4+ Re ⁷⁺ Rhenium 186_2	76 3+ Os ⁴⁺ Osnium 190.2	77 3+ ir 4+ httun 192_2	78 4+ Pt ²⁺ Platram 195.1	79 3+ Au ¹⁺ e# 197.0	80 2+ Hg ¹⁺ Mercury 200,6	81 1+ T 3+ Tullun 204_4	82 2+ Pb 4+ Leed 207_2	83 3+ Bi 5+ Bienuth 209.0	84 2+ Po 4+ Pdenium (209)	85 - At Astatine (210)	86 0 Rn Radon (222)
7	87 + Fr Francium (223)	88 2+ Ra Ratum (226)	89 3+ Ac Actinium (227)	104 Rf Reference	105 Db Dubrian (262)	106 Sg Sasborgium (263)	107 Bh Bohrium (262)	108 Hs Huston (265)	109 Mt Vetreium (266)	110 Ds Damatadium (281)	111 Rg Reenlgenium (272)	112 Uub* Uhuntium (285)	113 Uut* ^{Unantium} (284)	114 Uuq* Ununquadum (289)	115 Uup* Unapentus (288)	116 Unuhedun (292)		
* Temporary names																		
				\backslash	58 3+ Ce ⁴⁺ ^{Carlum} 140,1	59 3+ Pr 4+ Praseodymium 140.9	60 3+ Nd Neodymium 144_2	61 3+ Pm Promethium (145)	62 3+ Sm 4+ Sanston 150_4	63 3+ Eu ²⁺ Europium 152_0	64 3+ Gd Cadolnium 157.3	65 3+ Tb 4+ Tebiun 158,9	66 3+ Dy Dysprosium 162_5	67 3+ Ho Holnium 164_9	68 3+ Er Etilen 167.3	69 3+ Tm ²⁺ Thalun 168,9	70 3+ Yb 2+ Yaatiun 173,0	71 3+ Lu Luteturs 175,0
					90 4+ Th Thetwn 232_0	91 5+ Pa ⁴⁺ Protectinium 231_0	92 6+ U 4+ Unanium 238_0	93 5+ Np 3+ Netwin 6+ (237)	94 4+ Pu 5+ Paterian 5+ (244)	95 3+ Am 5+ Americian 6+ (243)	96 3+ Cm ^{Culum} (247)	97 3+ Bk ⁴⁺ Berkellum (247)	98 3+ Cf Callenian (251)	99 3+ Es Ensteinion (252)	100 3+ Fm Femiun (257)	101 2+ Md ³⁺ Mentelexium (258)	102 2+ No ³⁺ Netelian (259)	103 3+ Lr Lamescian (262)

Metals, Non-metals, Metalloids

- Period table has interesting patterns
- Due to Mendeleev's organization, interesting patterns are created, such as the groups: metals, non-metals and metalloids.

		State at Room Temperature	Appearance	Conductivity	Malleability and Ductility
	Metals	 solid except for mercury (a liquid) 	 shiny lustre 	 good conductors of heat and electricity 	malleableductile
	Non-metals	 some gases some solids only bromine is a liquid 	 not very shiny 	 poor conductors of heat and electricity 	brittlenot ductile
ers	Metalloids	 solids 	 can be shiny or dull 	 may conduct electricity poor conductors of heat 	 brittle not ductile

See page 55

BC SCIENCE

Periods and Families

- Each horizontal row in the periodic table is a period
- Vertical columns form groups or chemical families
 - Alkali metals highly reactive group 1
 - Alkaline earth metals group 2, burn in air if heated
 - Halogens group 17, highly reactive non-metals
 - Noble gases group 18, stable and unreactive non-metals

Take the Section 2.2 Quiz

2.3 Periodic Table and Atomic Theory

- Elements with similar properties have similar electron arrangements
- Bohr models show electron arrangement in shells

Bohr model patterns

- Chemical families on the periodic table have the same number of valence electrons
- Elements in the same period have the same number of shells
- Period number indicates the number of electron shells

Atom Stability

- Noble gases are very unreactive because their atoms have filled valence shells. Filled shells make atoms stable. Atoms with filled shells do not easily trade or share electrons.
- Other atoms gain or lose electrons in order to achieve the stability of noble gases. Gaining or losing electrons makes atoms into ions.
 - Metals lose electrons to form positive ions
 - Non-metals gain electrons to form negative ions
 - lons have a similar electron arrangement to the nearest noble gas
 - Example: Sodium ion (Na⁺) has 11 protons (11⁺) and 10 electrons (10⁻) for a total charge of 1⁺

Take the Section 2.3 Quiz

	Lithium	Magnesium	Chlorine
Atom	Li 3p2,1	Mg 12 p 2,8,2	Cl 17p 2,8,7
Ion	Li+3p2	Mg ² +12 p 2 <mark>,</mark> 8	Cl– 17p 2,8,8

See pages 66 - 67

3.1 Compounds

- Compounds are pure substances made of more than one kind of atom joined together. The atoms are held together with chemical bonds.
- Compounds come in two basic types: covalent and ionic.

Covalent compounds share electrons to form molecules. Example: water

(c) McGraw Hill Ryerson 2007

In ionic compounds, atoms gain or lose electrons to form ions. Example: NaCl

See pages 76 - 78

- Ionic solids exist as a solid in the form of an ionic lattice.
- The positive ions attract all of the negative ions, and vice versa. In the example of table salt (NaCl) the one-to-one ratio of ions results in a simple square-shaped ionic cyrstal:

(c) McGraw Hill Ryerson 2007

See page 78

- Covalent and ionic bonds can occur together
- A molecule can gain or lose electrons to become charged, forming a polyatomic ion.
- Polyatomic ions form compounds like other ions.
 - Example: Ammonium ion (NH_4^+)
- There are many types of polyatomic ions, but they occur in a few basic shapes.

See pages 79 - 80

3.2 Names and Formulas of Ionic Compounds

- The chemical name indicates the elements present in the compound. Chemical names for ionic compounds are given according to rules.
 - The positive ion is always the first part of the name
 - The negative ion is always the second part of the name
 - The non-metal ion's name ends with the suffix "-ide"

Examples of Names of Ionic Compounds				
Elements Forming the Ionic Compound	Name of the Ionic Compound			
calcium and nitrogen	calcium nitride			
potassium and oxygen	potassium oxide			
lithium and chlorine	lithium chloride			
magnesium and sulphur	magnesium sulphide			
silver and fluorine	silver fluoride			

See page 85

Ionic Chemical Formulas

In an ionic compound, the positive charges balance the negative charges. This balance of charge is used to determine the smallest whole number ratio of positive

to negative ions.

Steps for Writing	Examples			
the Formula	zinc nitride	aluminum chloride		
 Identify each ion and its charge. 	zinc: Zn ²⁺ nitride: N ³	aluminum: Al ³⁺ chloride: Cl		
 Determine the total charges needed to balance positive with negative. 	$Zn^{2}+2+2+2=+6$ $N^{3-}2-3-3=-6$	AI^{3+} : = +3 CI^{-} : -1 -1 -1 = -3		
 Note the ratio of positive ions to negative ions. 	3 Zn ²⁺ ions for every 2 N ^{3–} ions	1 Al ³⁺ ion for every 3 Cl ions		
 Use subscripts to write the formula. A "1" is not shown in the subscripts. 	Zn ₃ N ₂	AlCl ₃		

Multivalent Metal Compounds

- Many metals are multivalent, meaning the metals form two or more different positive ions with different charges
- For example, the atom iron forms two ions Fe²⁺ and Fe³⁺
- Too distinguish different ions for the same metal, roman numerals are added to their name. For example, Fe³⁺ would be named "iron(III)"

Multivalent Metal Ions					
Name	Formula				
chromium(II) fluoride	CrF ₂				
chromium(III) fluoride	CrF ₃				
lead(IV) sulphide	PbS ₂				
copper(I) phosphide	Cu ₃ P				

Comnound

Metal Ion Charge	Roman Numeral
1+	I
2+	Ш
3+	Ш
4+	IV
5+	V
6+	VI
7+	VII

Writing Multivalent Formulas

(c) McGra

BC SCIENCE

	Steps for Writing the	Exam		
	Formula	Iron(III) sulphide	Lead(IV) oxide	
	 Identify each ion and its charge. 	iron(III): Fe ³⁺ sulphide: S ^{2–}	lead(IV): Pb ⁴⁺ oxide: O ^{2–}	
	 Determine the total charges needed to balance positive with negative. 	Fe ³⁺ : +3 +3 = +6 S ²⁻ : -2 -2 -2 = -6	Pb ⁴⁺ : = +4 O ²⁻ : -2 -2 = -4	
	 Note the ratio of positive ions to negative ions. 	2 Fe ³⁺ ions for every 3 S ^{2–} ions	1 Pb ⁴⁺ ion for every 2 O ^{2–} ions	
w Hill	 Use subscripts to write the formula. A "1" is not shown in the subscripts. 	Fe ₂ S ₃	PbO ₂	See page 89

Multivalent Compound Names

- Steps to writing multivalent compound names are as follows:
 - Identify the metal and verify it forms more than one ion
 - Determine the ratio of ions for example, Fe_2O_3 means 2 iron ions for every 3 oxygen ions
 - Note the charge on the negative ion: Oxygen is O²⁻
 - The positive and negative charges must balance, so 2 iron ions of 3+ charge (Fe3+) are needed to balance the 3 oxygen ions
 - Write the name of the compound: Iron(III) oxide

RC SCIENCE

Polyatomic Ion Compounds

Steps to writing names for formulas involving polyatomic ions are similar to other ionic compounds

	Steps for Writing	Examples			
	the Formula	iron(III) hydroxide	ammonium carbonate		
	 Identify each ion and its charge. 	iron(III): Fe ³⁺ hydroxide: OH	ammonium: NH_4^+ carbonate: CO_3^{2-}		
	 Determine the total charges needed to balance positive with negative. 	Fe ³⁺ : = 3+ OH ⁻¹ : -1 -1 -1 = 3-	NH_4^+ : +1 +1 = 2+ CO_3^{2-} : = 2-		
	Note the ratio of positive ions to negative ions.	1 Fe ³⁺ ion for every 3 OH ⁻ ions	2 NH ₄ ⁺ ions for every 1 CO ₃ ²⁻ ion		
(c) McGraw Hill	 Use subscripts and brackets to write the formula. Omit brackets if only one ion is needed. 	Fe(OH) ₃	(NH ₄) ₂ CO ₃		